The strong nuclear force
The strong nuclear force, also called the strong nuclear interaction, is the strongest of the four fundamental forces of nature. It's 6 thousand trillion trillion trillion (that’s 39 zeroes after 6!) times stronger than the force of gravity, according to the HyperPhysics website. And that's because it binds the fundamental particles of matter together to form larger particles. It holds together the quarks that make up protons and neutrons, and part of the strong force also keeps the protons and neutrons of an atom's nucleus together.
Much like the weak force, the strong force operates only when subatomic particles are extremely close to one another. They have to be somewhere within 10^-15 meters from each other, or roughly within the diameter of a proton.
The strong force is odd, though, because unlike any of the other fundamental forces, it gets weaker as subatomic particles move closer together. It actually reaches maximum strength when the particles are farthest away from each other, according to Fermilab. Once within range, massless charged bosons called gluons transmit the strong force between quarks and keep them "glued" together. A tiny fraction of the strong force called the residual strong force acts between protons and neutrons. Protons in the nucleus repel one another because of their similar charge, but the residual strong force can overcome this repulsion, so the particles stay bound in an atom's nucleus.

No comments:
Post a Comment